Knowledge Extraction by using an Ontology-based Annotation Tool

Knowledge Media Institute (KMi)
The Open University
Milton Keynes, MK7 6AA

October 2001

Maria Vargas-Vera, E. Motta, J. Domingue, S. Buckingham Shum and M. Lanzoni
Motivation
- Extraction of knowledge structures from web pages
- Final goal - Ontology population

Approaches to semantic annotation of web pages (SAW)
- OntoAnnotate [Stab, et al]
- SHOE [Hendler et al]

Our solution to SAW problem
- Ontology driven annotation

Work so far - we had tried with two different domains (KMi stories and Rental adverts)

Conclusions and Future work
Our system consists of 4 phases:

- **Browse**
 - browser selection
- **Mark-up phase** (mark-up text in training set)
- **Learning phase** (learns rules from training set)
- **Extraction phase** (extracts information from a document)
Mark-up phase

- Ontology-based Mark-up
 - The user is presented with a set of tags (taken from ontology)
 - User selects slots-names for tagging.
 - Instances are tagged by the user
EVENT 1:

- visiting-a-place-or-people
 - visitor (list of person(s))
 - people-or-organisation-being-visited (list of person(s) or organisation)
 - has-duration (duration)
 - start-time (time-point)
 - end-time (time-point)
 - has-location (a place)
 - other-agents-involved (list of person(s))
 - main-agent (list of person(s))
Learning phase

- Learning phase was implemented using Marmot and Crystal.
- Mark-up all instances in the training set
- Marmot performs segmentation of a sentence: noun phrases, verbs and prepositional phrases.
- Example: “David Brown, the Chairman of the University for Industry Design and Implementation Advisory Group and Chairman of Motorola, visited the OU”.
- Marmot output:
 - SUBJ: DAVID BROWN %comma% THE CHAIRMAN OF THE UNIVERSITY
 - PP: FOR INDUSTRY DESIGN AND IMPLEMENTATION ADVISORY GROUP AND CHAIRMAN OF MOTOROLA
 - PUNC: %COMMA%
 - VB: VISITED
 - OBJ: THE OU
Crystal derives a set of patterns from a training corpus.

Example of Rule generated using Crystal.

- Conceptual Node for visiting-a-place-or-people event:
 - Verb: visited (active verb) (trigger word)
 - Visitor: V (person)
 - Has-location: P (place)
 - Start-time: ST (time-point)
 - End-time: ET (time-point)

Example of patterns:
- X visited Y on the date Z
- X has been awarded Y money from Z
Badger makes instantiation of templates.

In our example (David’s Brown story), Badger instanciates the following slots of an Event -1 frame:

- **Type**: visiting-a-pace-or-people
- **Place**: The OU
- **Visitor**: David Brown
(Def-instance visit-of-david-brown-the-chairman-of-the-university
visiting-a-place-or-people
((start-time wed-15-oct-1997)
(end-time wed-15-oct-1997)
(has-location the-ou)
(visitor david-brown-the-chairman-of-the-university))
)
David Brown’s story output after the OCML code is sent to Webonto.

<table>
<thead>
<tr>
<th>Name:</th>
<th>visit-of-david-brown-the-chairman-of-the-university</th>
</tr>
</thead>
</table>

Click on a slot name to see examples of its use:

- **has-duration**: 1-day
- **duration**: None
- **start-time**: wed-15-oct-1997
- **time-point**: None
- **end-time**: wed-15-oct-1997
- **time-point**: None
- **has-location**: the-ou
- **location**: None
- **visitor**: david-brown-the-chair
- **(or person group-of-people)**: None
- **people-or-organization-being-visited**: (or person organization)
- **(or person organization)**: None
Currently our library contains methods for learning:

- Crystal (bottom-up learning algorithm)
- Whisk (top-down learning algorithm)

We plan to extend the library with other methods besides Crystal and Whisk.
Whisk (second tool for learning)

- Whisk: learns information extraction rules
 - can be applied to semi-structured text (text is un-gramatical, telegraphic).
 - can be applied to free text (syntactically parsed text).
- It uses a top-down induction algorithm seeded by a specific training example.
- Whisk has been used:
 - CNN weather forecast in HTML
 - BigBook addresses in HTML
 - Rental ads in HTML (our second domain)
 - Seminar announcements
 - job posting
 - Management succession text from MUC-6
Sample Rule from Rental domain

- Domain Rental Adverts:
 - Ballard - 2 Br/2 Ba, top flr, d/w 1000 sf, $820. (206) 782-2843.

- Rule expressed as regular expression:
 - ID 26 Pattern:: * (Nghbr) * (<digit>) ‘Br’ * ‘$’ (<number>).

- Output:: Rental{Neighbourhood $1} {Bedrooms $2} {Price $3}
Items in green colour are semantic word classes.

Nghbr :: Ballard | Belltown| ...

digit :: 1|2|…|9

number :: (0-9)*

Complexity : restricted wild card therefore, time is not exponential.
Conclusions and Future Work

- We had built a tool which extracts knowledge using Ontology, IE component and OCML pre-processor.
- We had worked with 2 different domains (KMi stories and Rental adverts)
 - first domain
 - Precision over 95%
 - second domain
 - Precision: 86% - 94%
 - Recall: 85% - 90%
- We will integrate more IE methods in our system.
- To extend our system in order to produce XML output, RDFS,…
- to integrate visualisation capabilities